Jerarquía de operaciones: reglas con ejemplos y ejercicios resueltos

Jerarquía de operaciones: reglas con ejemplos y ejercicios resueltos

En matemáticas, la jerarquía de operaciones hace referencia al orden en que se deben ejecutar las operaciones matemáticas. Porque, la jerarquía de operaciones es un método para resolver operaciones matemáticas con varios signos de agrupación y múltiples operadores matemáticos.

Se llaman operadores matemáticos a los símbolos que nos permiten reconocer cual es la operación matemática que debemos realizar:

  • Para la suma, el operador matemático es: “+”
  • Para la resta, el operador matemático es: “-”
  • Para la multiplicación, el operador matemático es: “.” o “×”
  • Para la división, el operador matemático es: “÷” o “/”

Esta jerarquía establece por donde se debe iniciar la resolución de las operaciones, atendiendo las prioridades que se estipulan, tanto para los signos de agrupación como para los operadores matemáticos. En consecuencia, para resolver operaciones matemáticas hay que conocer dos cosas fundamentalmente:

  • ¿Cómo suprimir los signos de agrupación?
  • ¿Cuáles operadores tienen la mayor prioridad para iniciar a resolver las operaciones matemáticas?

Las reglas que rigen las respuestas a estas dos interrogantes, se conocen como la jerarquía de operaciones.

Jerarquía de operaciones

La jerarquía de operaciones define, primero que todo, cuales son las prioridades de las operaciones matemáticas al momento de su ejecución. Y también define, cuales son las prioridades para suprimir los signos de agrupación.

Esas prioridades establecen tanto el orden en que deben realizarse las operaciones matemáticas como el orden en que deben eliminarse los signos de agrupación. Y de acuerdo con esas prioridades y el orden en que se ejecutan, se establecen las reglas que rigen la resolución de las operaciones matemáticas.

Signos de agrupación

Los signos de agrupación, como su nombre lo indica, sirven para señalar cuales son las operaciones que deben realizarse primero. Para hacer este señalamiento, se incluyen dentro de los signos de agrupación, las operaciones que catalogamos como prioritarias.

En matemática, los signos de agrupación más utilizados son:

  • Los paréntesis ( )
  • Los corchetes [ ]
  • Las llaves { }

Adicionalmente, también se consideran signos de agrupación:

  • Las barras de fracciones /
  • Las barras que indican valor absoluto | |
  • El símbolo de raíz √

Eliminación de los signos de agrupación

La eliminación de los signos de agrupación debe hacerse considerando las siguientes premisas:

  • Si el signo de agrupación va precedido por un “+”, solo se elimina el signo de agrupación permitiendo que todos los términos internos conserven su signo, sea positivo o negativo.
  • Si el signo de agrupación va precedido por un “-”, para eliminar el signo de agrupación se aplica la ley de los signos a todos y cada uno de los términos contenidos.
  • El orden para la supresión de los signos de agrupación es primero los paréntesis, luego los corchetes y por último, las llaves.

Es importante destacar que, para cambiar los signos de cada término, debe respetarse también, la ley de los signos de la suma, resta, multiplicación y división.

Ejemplos de eliminación de los signos de agrupación

Considerando las premisas previamente expuestas, veamos cómo podemos aplicarlas en algunos ejemplos:

Ejemplo 1:

Ejemplo 2:

Reglas

Las reglas establecen el orden en que deben ejecutarse las operaciones dentro de una expresión numérica que contiene múltiples operaciones. El orden establecido para la resolución de las operaciones matemáticas es el siguiente:

Orden de los cálculos

Los cálculos de operadores con igual prioridad se realizan de izquierda a derecha.

Ejemplo 1:

4+115-9+10=119-9+10=110+10=120

Ejemplo 2:

Eliminar signos de agrupación

Primero, se eliminan los signos de agrupación, realizando primero las operaciones contenidas en ellos.

Ejemplo 1:

(4+115)-(9-10)=119-(-1)=119+1=120

Ejemplo 2:

Resolver exponentes y radicales

Seguidamente, se resuelven los exponentes o potencias y los radicales o raíces.

Como en este ejemplo:

Resolver multiplicaciones y divisiones

El próximo paso es resolver las multiplicaciones y divisiones.

Veamos este ejemplo:

Resolver sumas y restas

Como último paso, se agrupan los números positivos y los negativos, antes de resolver las sumas y/o las restas.

4+115-9+10-7=129-16=113

Prioridad en la resolución de operaciones matemáticas

Es importante establecer cuál es la prioridad en la resolución de operaciones matemáticas que debes considerar para obtener un resultado correcto:

Paso 1

Cuando no hay signos de agrupación, se comienza resolviendo los exponentes, luego las multiplicaciones y divisiones, después se agrupan los números positivos y negativos, antes de sumarlos o restarlos.

3+9+24-5-10=36-15=21

Paso 2

Si hay signos de agrupación, se calculan las expresiones dentro de los signos de agrupación, antes de eliminarlos usando la ley de los signos, para después ejecutar el paso 1.

En resumen

En las operaciones matemáticas, hay niveles que no se pueden mezclar al resolverlas y siempre se debe iniciar a partir de las más complejas, como los exponentes y radicales. Continuando hasta alcanzar los niveles más simples, como las sumas y las restas.

Igualmente, es fundamental saber que si existen signos de agrupación, ya sean paréntesis, corchetes y/o llaves, primero hay que resolver las operaciones que están dentro de ellos. Y en todos los momentos, mientras se resuelven las operaciones hay que respetar las leyes de los signos de la suma, resta, multiplicación y división.

Ejercicios resueltos

A continuación, se presentan algunos ejercicios resueltos que ilustran lo visto hasta ahora en relación con la jerarquía de operaciones:

Ejercicio 1

Comenzando, se realizan las operaciones que están dentro de los paréntesis:

Una vez hechos estos cálculos, se procede a eliminar los paréntesis:

Ahora, se resuelven las divisiones:

Finalmente, se resuelven las sumas:

1+6+6=13

Ejercicio 2

Iniciando, se resuelven las operaciones que están dentro de los paréntesis:

Segundo, se resuelven las operaciones matemáticas que están dentro de los corchetes:

Tercero, se resuelven las multiplicaciones y divisiones:

Cuarto, se resuelven las sumas y restas, agrupando los números positivos y negativos:

30-3-2=30-5=25

2 Replies to “Jerarquía de operaciones: reglas con ejemplos y ejercicios resueltos

Deja una respuesta

Tu dirección de correo electrónico no será publicada.